Ir al contenido principal de la página
  • Twitter
  • Youtube
  • Català
  • English
  • Localización

Buscar...

Universitat de Lleida Universitat de Lleida
Grupo de Investigación en AgróTICa y Agricultura de Precisión – GRAP
  • Inicio
  • Presentación  
      • ¿Quiénes somos?
      • ¿Que hacemos?
      • Coordinación
      • Miembros
      • Colaboraciones
      • Contacta con el GRAP
  • Investigación  
      • Líneas de investigación
      • Proyectos de investigación
      • Projectes d'innovació
      • Colaboraciones investigación
      • Visitantes
      • Tesis dirigidas
      • Oferta de tesis
  • Publicaciones  
      • Publicaciones científicas
      • Comités editoriales
      • Participación en congresos
      • Publicaciones divulgativas
      • Libros publicados
      • Datasets
  • Noticias  
      • Prensa e internet
      • Reportajes
      • Vídeos
  • Repositorio AP  
      • Inicio RDAP
      • Conceptos básicos
      • Adquisición de datos
      • Extracción de información
      • Toma de decisiones
      • Actuación en campo
  • Twitter
  • Youtube
  • Català
  • English
  • Localización
  • Inicio
  • /Investigación
  • /Proyectos de investigación
  • /PAgPROTECT (2022-2024)
  • /Resultados del proyecto
Investigación
 Investigación
  • Líneas de investigación
  • Proyectos de investigación
    • DIPROTES (2024-2026)
    • FruitMeasure App (20024-2026)
    • PAgPROTECT (2022-2024)
      • Información del proyecto
      • Resultados del proyecto
    • DIGIFRUIT (2022-2024)
    • PAgFRUIT (2019-2022)
  • Projectes d'innovació
  • Colaboraciones investigación
  • Visitantes
  • Tesis dirigidas
  • Oferta de tesis

Centros

 

Departamentos

 

__________________________________

Grup de recerca
reconegut per la

Generalitat de Catalunya
2021 SGR 1467

 Descargar pdf

PAgPROTECT - Project results

 Descargar pdf
Scientific articles

Scientific articles

  • Miranda JC, Gené-Mola J, Zude-Sasse M, Tsoulias N, Escolà A, Arnó J, Rosell-Polo JR, Sanz-Cortiella R, Martínez-Casasnovas JA, Gregorio E. 2023. Fruit sizing using AI: A review of methods and challenges . Postharvest Biology and Technology 206 (2023) 112587. DOI: https://doi.org/10.1016/j.postharvbio.2023.112587 

  • Assessing automatic data processing algorithms for RGB-D cameras to predict fruit size and weight in apples
    Miranda JC, Arnó J, Gené-Mola J, Lordan J, Asín L, Gregorio E. 2023. Computers and Electronics in Agriculture, 214, 108302. DOI: https://doi.org/10.1016/j.compag.2023.108302 

  • Miranda, J.C., Arnó, J., Gené-Mola, J., Fountas, S., Gregorio, E. 2023. AKFruitYield: Modular benchmarking and video analysis software for Azure Kinect cameras for fruit size and fruit yield estimation in apple orchards. SoftwareX, 24, 101548, https://doi.org/10.1016/j.softx.2023.101548
  • Ferrer-Ferrer, M., Ruiz-Hidalgo, J., Gregorio, E., Vilaplana, V., Morros, J.R., Gené-Mola, J. 2023. Simultaneous fruit detection and size estimation using multitask deep neural networks. Biosystems Engineering, 233, 63-75, https://doi.org/10.1016/j.biosystemseng.2023.07.010
  • Gené-Mola, J., Ferrer-Ferrer, M., Gregorio, E., Blok, P.M., Hemming, J., Morros, J.R., Rosell-Polo, J.R., Vilaplana, V., Ruiz-Hidalgo, J. 2023. Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation. Computers and Electronics in Agriculture, 209, 107854. https://doi.org/10.1016/j.compag.2023.107854
  • Escolà, A., Peña, J.M., López-Granados, F., Rosell-Polo, J.R., de Castro, A., Gregorio, E., Jiménez-Brenes, F.M., Sanz, R., Sebé, F., Llorens, J., Torres-Sánchez, J. 2023. Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 1: Methodology and comparison in vineyards. Computers and Electronics in Agriculture, 212, 108109. https://doi.org/10.1016/j.compag.2023.108109
  • Torres-Sánchez, J., Escolà, A., de Castro, A., López-Granados, F., Rosell-Polo, J.R., Sebé, F., Jiménez-Brenes, F.M., Sanz, R., Gregorio, E., Peña, J.M. 2023. Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 2: Comparison for different crops and training systems. Computers and Electronics in Agriculture, 212, 108083. https://doi.org/10.1016/j.compag.2023.108083

Congresses and conferences

Congresses and conferences

  • Gené-Mola J., Felip-Pomés M., Net-Barnes F., Morros J.R., Miranda J.C., Arnó J., Asín L., Lordan J., Ruiz-Hidalgo J., Gregorio E., 2023. Video-Based Fruit Detection and Tracking for Apple Counting and Mapping. Proceedings of the 2023 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov 6-8, 2023, Pisa (Italy). PP 301-306. ISBN 979-8-3503-1272-0/23
  • Sandonís-Pozo, L., Martínez-Casasnovas, J.A., Escolà, A., Rosell-Polo, J.R., Rufat, J., Pascual, M., 2023. A new leafiness-LiDAR index to estimate light interception in intensive olive orchards. In: Staford, J (Ed.), Precision Agriculture'23, 14th European Conference on Precision Agriculture, Wageningen Academic Publishers, Wageningen (The Netherlands), pp 189-195. DOI: https://doi.org/10.3920/978-90-8686-947-3_22, https://repositori.udl.cat/handle/10459.1/463686.

    Gené-Mola J., Ferrer-Ferrer M, Gregorio E., Blok P.M., Hemming J., Morros JR., Rosell-Polo JR., Vilaplana V., Ruiz-Hidalgo J. Amodal segmentation for on-tree apple fruit size estimation with RGB-D images. 2023. Anual Catalan Meeting on Computer Vision (ACMCV2023). Poster.

  • Lavaquiol, B., Llorens, J., Sanz, R., Arnó, J., Escolà, A. 2023. Uncertainty analysis of a LiDAR-based MTLS point cloud using a high-resolution ground-truth. In: Canavari, M., Vitali, G., Mattetti, M. (Eds.), Book of Abstracts (Posters), 14th European Conference on Precision Agriculture, 2-6 July 2023, Bologna, Italy. pp 37. https://repositori.udl.cat/handle/10459.1/463872

  • Llorens, J., Román, C., Escolà, A., Gené-Mola, J, Arnó, J., Martínez-Casasnovas, J.A. 2023. How can precision agriculture contribute to the 50 % pesticide reduction goal of the farm-to-fork strategy? In: Staford, J (Ed.), Precision Agriculture'23, 14th European Conference on Precision Agriculture, Wageningen Academic Publsxhers, Wageningen (The Netherlands), pp 285-292. DOI: 10.3920/978-90-8686-947-3.
  • Martínez-Casasnovas, J.A., Rosell-Tarragó, M., Rosell-Polo, J.R., Sanz, R., Gregorio, E., Gené-Mola, J., Llorens, J., Arnó, J., Escolà, A. 2023. Low-cost terrestrial photogrammetry for orchard sidewards 3d reconstruction. In: Canavari, M., Vitali, G., Mattetti, M. (Eds.), Book of Abstracts (Posters), 14th European Conference on Precision Agriculture, 2-6 July 2023, Bologna, Italy. pp 113. https://repositori.udl.cat/handle/10459.1/464591

 

Technical papers

Technical papers

In progress

Final Degree Projects, Master Thesis and Doctoral Thesis

Final Degree Projects, Master Thesis and Doctoral Thesis

  • Flores Junqué, A. 2023. Analysis of air pollution in pesticide treatments using a LiDAR system. Final dissertation, Degree in Energy Engineering and Sustainability, Polytechnic School, Universitat de Lleida. [In Catalan]. Enllaç a repositori: https://repositori.udl.cat/handle/10459.1/463728
  • Felip Pomes, M. 2023. AI-based Mobile Application for Real-Time Fruit Sizing. Final dissertation, Master in Informatics Engineering, Polytechnic School, Universitat de Lleida.
  • Arpaci, B. 2023. 3D Apple Detection from Large Point Clouds Using Deep Learning. Final dissertation, Master in Coputer Vision, Autonomous University of Barcelona. https://ddd.uab.cat/record/285205

 

Datasets & Software

Datasets & Software

  • Gené-Mola J, Ferrer-Ferrer M, Jochen H, van Dalfsen P, de Hoog D, Sanz-Cortiella R, Rosell- Polo JR, Morros JR, Vilaplana V, Ruiz-Hidalgo J, Gregorio E. 2023. AmodalAppleSize_RGB-D dataset: RGB-D images of apple trees annotated with modal and amodal segmentation masks for fruit detection, visibility and size estimation. Data in Brief, 52, 110000. DOI: https://doi.org/10.1016/j.dib.2023.110000

  • Software: Miranda, J.C., Arnó, J., Gené-Mola, J. Fountas, S., Gregorio, E. 2023. AKFruitYield: AK_SW_BENCHMARKER - Azure Kinect Size Estimation & Weight Prediction Benchmarker. https://github.com/GRAP-UdL-AT/ak_sw_benchmarker
  • Software: Miranda, J.C., Arnó, J., Gené-Mola, J. Fountas, S., Gregorio, E. 2023. AK_VIDEO_ANALYSER - Azure Kinect Video Analyser. https://github.com/GRAP-UdL-AT/ak_video_analyser/
   Última modificación: martes, 20 de febrero de 2024
Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 2: Comparison for different crops and training systems

Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 2: Comparison for different crops and training systems

Simultaneous fruit detection and size estimation using multitask deep neural networks

Simultaneous fruit detection and size estimation using multitask deep neural networks

Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 1: Methodology and comparison in vineyards

Mobile terrestrial laser scanner vs. UAV photogrammetry to estimate woody crop canopy parameters – Part 1: Methodology and comparison in vineyards

Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation

Looking behind occlusions: A study on amodal segmentation for robust on-tree apple fruit size estimation

Ir a diapositiva anterior
Ir a diapositiva siguiente

Grupo de Investigación en AgróTICa y Agricultura de Precisión – GRAP 2025 © | Telf: +34 973 70 28 62

  • Contactar
  • Universitat de Lleida